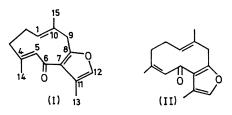
Structure and Conformation of the Sesquiterpenoids Furanodienone and Isofuranodienone

By H. HIKINO,* C. KONNO, and T. TAKEMOTO

(Pharmaceutical Institute, School of Medicine, Tohoku University, Aoba-yama, Sendai, Japan)


and K. TORI, M. OHTSURU, and I. HORIBE

(Shionogi Research Laboratory, Shionogi & Co., Ltd., Fukushima-ku, Osaka, Japan)

FROM the rhizome of zedoary, *Curcuma zedoaria* Roscoe (Zingiberaceae), a number of sesquiterpenoids has been isolated.¹ Further studies on the constituents has resulted in the isolation of two novel furan-containing sesquiterpenoids for which the names furanodienone and isofuranodienone are suggested. We describe evidence for the structures and the conformations of the two isoprenoids.

Both furanodienone (I), m.p. $89 \cdot 5 - 90 \cdot 5^{\circ}$, λ_{max} 241 and 269 nm. (log ϵ 3.98 and 3.86 in EtOH), ν_{max} (KBr) 1645 cm.⁻¹, and isofuranodienone (II), m.p. 70-71°, λ_{max} 223 and 248 nm. (log ϵ 4.17 and 3.95 in EtOH), ν_{max} (KBr) 1667 cm.⁻¹, possess the same molecular formula $C_{15}H_{18}O_2$. For elucidation of the structures, analysis of ¹H n.m.r. data with the aid of double resonance experiments (see the Table)[†] was particularly useful. Each molecule has a

furan ring with the following substituents: α -H, β -Me, β '-carbonyl, and α '-methylene, and two ·CH:CMe· groupings. One olefinic proton is long-range-coupled to the α '-methylene and also coupled to the other methylene protons, and the other olefinic proton signal appears as a broad singlet at a somewhat lower field, showing that the

[†] The recording conditions of ¹H n.m.r. spectra are similar to those previously reported.³ Accuracies are about $\delta \pm 0.02$ p.p.m. for chemical shifts and about $\pm 2\%$ for NOE's. Signals are expressed without fine splittings.

carbon bearing this olefinic proton is adjacent to the carbonyl. As a result, both compounds are considered to between 9β -H and 15-Me, determine its conformation as illustrated in the Figure (B).

Observed signal	Increase in the integrated intensity of the signal observed during complete saturation of the signal irradiated in furanodienone							
	1-H	5-H	9α-H	9 <i>β</i> -H	12-H	13-H	14-H	15-H
1-H 5-H 9α-H 9β-H 12-H	$5.16 \text{ br } dd \\ (4.72 \text{ br } dd) \\ \hline 6(7) \\ (7) \\ 16 \\ (0) \\ a(a) \\ \end{bmatrix}$	5.80 br s (5.55 br s) $6(10)(0)(0)a(a)$	b(b)	(3.55 d)	$\begin{array}{c} 7.05 \text{ q} \\ (6.82 \text{ q}) \\ a(a) \\ a(0) \\ (0) \\ 0 \\ \hline \end{array}$	$\begin{array}{c} 2 \cdot 13 \ d \\ (2 \cdot 24 \ d) \\ a(0) \\ a(0) \\ (a) \\ 0 \\ (a) \\ 25(28) \end{array}$	$\begin{array}{c} 1.99 \text{ d} \\ (1.89 \text{ d}) \\ 7^{\ddagger}(0) \\ 22^{\ddagger}(0) \\ (0) \\ a \\ (0) \\ a(0) \end{array}$	$\begin{array}{c} 1 \cdot 30d \\ (1 \cdot 07 \ d) \\ 0(0) \\ 0(0) \\ (0) \\ 4 \\ (4) \\ a(0) \end{array}$
	in isofuranodienone							
	1-H	5-H	9α-H	9 <i>β-</i> Η	12-H	13-H	14-H	15-H
1-H 5-H 9α-H 9β-H 12-H	$5 \cdot 20 \text{ br } dd (5 \cdot 11 \text{ br } dd) $		$ \begin{array}{c} 3.13 d \\ (3.03 d) \\ b(b) \\ a(0) \\ \hline b(b) \\ a(0) \end{array} $	3·49 (3·35 d) b(b) a(0) b(b) <u></u> a(0)	7.00 q (6.79 q) a(a) 0(0) 0(0) 0(0)	1.91 d (1.79 d) b(a) a(0) a(0) a(0) 22(23)	1.89 d (1.49 d) b(0) 33(30) a(a) a(a) a(0)	$\begin{array}{c} 1.55 \text{ d} \\ (1.34 \text{ d}) \\ 0(0) \\ 14(16) \\ 0(0) \\ 12(10) \\ 0(0) \end{array}$

The chemical shifts (δ) and nuclear Overhauser effects (%) in CDCl₃ and C₆D₆ (in parentheses)

* Not measured. b Undeterminable.

have the same constitution, 8,12-oxido-germacra-1(10),4,-7,11-tetraen-6-one, and hence to be geometric isomers.

The configurations of the cis-trans-isomers in regard to the double bonds were determined by measurements of intramolecular nuclear Overhauser effects (NOE).^{2,†} As summarized in the Table, saturation of the 14- or 15-Me signal in (I) had no effect on the 5- or 1-H signal, respectively; this indicates that both trisubstituted double bonds are trans.[‡] On the other hand, no interaction between the 15-Me and the 1-H in (II) was observed, showing that the C-1: C-10 double bond is trans, while saturation of the 14-Me signal gave rise to a considerable increase in the area of the 5-H signal, demonstrating the C-4:C-5 bond to be cis. These facts enable us to deduce the structures of (I) and (II).

The conformations of the ten-membered rings in these two terpenoids were elucidated by the more extensive determination of NOE values. In (I), an increase in the integrated intensity of the 1-H signal caused by saturation of the 5-H signal, or vice versa, indicates that the tenmembered ring adopts the conformation in which 14-Me and 15-Me are syn. Further, observations of the NOE's between 1-H and 9α -H, and between 9β -H and 15-Me clearly define the actual conformation of (I) as depicted in the Figure (A). On the other hand, in (II), the NOE's observed between 5-H and 15-Me, between 1-H and 9a-H, and

In the spectra of these two sesquiterpenoids, the spacings of doublets of doublets due to the 1-H signals and the

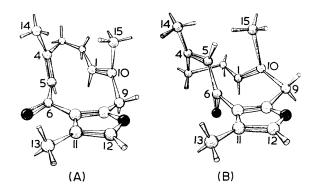


FIGURE. The molecular conformations of furanodienone (A) and isofuranodienone (B).

solvent-induced shifts of the signals on passing from CDCl₃ to $\mathrm{C}_6\mathrm{D}_6$ solutions are also consistent with the conformations assigned.

(Received, May 5th, 1969; Com. 612.)

[‡] The apparent increases in the areas of the 1- and 5-H signals on double irradiation at about 2 p.p.m. in CDCl₃ must be due to overlapping of the signals arising from some other protons situated close to these protons. Therefore, caution should be exercised for NOE measurements in such cases.

- ¹ Cj., H. Hikino, Y. Sakurai, and T. Takemoto, Chem. and Pharm. Bull. (Japan), 1968, 16, 1605.
- ² F. A. L. Anet and A. J. R. Bourne, J. Amer. Chem. Soc., 1965, 87, 5250.
 ³ K. Tori, M. Ohtsuru, I. Horibe, and T. Takeda, Chem. Comm., 1968, 943.